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Abstract  

The invariance of Dirac's equation under rotation has been used to obtain the wave equation 
for a particle interacting with an electromagnetic field. The origin of the anomalous 
magnetic moment  of  a particle has been attributed to the existence of  mass due to spin. 
These masses for a few representative particles have been calculated. In particular these 
calculations give a mass of  592.074 eV for a neutrino. An operator for the spin angular 
velocity has been constructed and the values of  spin angular velocities for the particles 
have also been calculated. 

1. Introduction 

Today there is an extensive amount of research being carried on to explain 
the anomalous magnetic moment of various elementary particles, and, as a 
result, vast literature exists on this subject. In the present paper the author has 
deviated from the traditional path. An exact treatment of anomalous magnetic 
moment based on a more realistic picture of the actual mechanism behind this 
phenomenon has been presented. The formalism developed in this paper gives 
us valuable additional information not obtainable by traditional means. In his 
quest, the author has not been bound by any of the past rigidly established rules. 
Starting with the invariance of the Dirac equation for a free particle under 
rotation, a wave equation in the coordinate system spinning with respect to the 
original one has been obtained. This equation has been used to obtain the 
wave equation describing a spin-~ particle interacting with an electromagnetic 
field. This equation correctly and exactly gives the intrinsic magnetic moment 
of a particle. The anomalous magnetic moment has been attributed to the 
existence of mass due to spin, which forms a part of" the observed mass of the 
particle. The mass due to spin has been calculated for a few representative 
elementary particles including a neutrino. The angular velocities of spin have 
also been calculated for the particles. For this purpose, an operator for spin 
angular velocity has been constructed. 
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2. The Wave Equation for  a Spin-½ Particle in an Electromagnetic Field 

The invariance of the Dirac equation for a free particle under rotation leads 
to the following wave equation in a coordinate system spinning with an angular 
velocity-e~ with respect to the original coordinate system1 : 

~ /  (H o + al. J)~ (2.1) i~ ~ = 

where H 0 = -icl~at. V + f3mc 2 is the Dirac operator expression for energy of a 
free particle and J = S + L is the total angular momentum operator for a Dirac 
particle. Equation (2.1) is, therefore, to be interpreted as the wave equation 
for a spin-½ particle spinning or rotating with an angular velocity oJ. 

As a special case, it is known from classical electrodynamics that the 
gyration or the precession angular velocity of a charged particle carrying a 
charge e in a magnetic field B is 

= - e B / m c  (2.2) 

Therefore, for this particular case, equation (2.1) would assume the form 2 

~ ( eL B - e S  B ) ~ - - .  (2.3) 
ih ~ = Ho - m~c " me 

From equation (2.3), it is clearly seen that the intrinsic magnetic moment (/.ts) 
due to spin is 

~s = eS/mc (2.4) 

and the magnetic moment (/ZL) due to the orbital angulm" momentum is 

btL = eL/mc (2.5) 

Thus we see that for bt s the g factor is correctly given by equation (2.4). 3 
However, the value of ~L given by equation (2.5) is twice as large as that pre- 
dicted by classical electrodynamics. It seems that since S and L both represent 
angular momenta,bt s and ~z should be given by the same rule and therefore 
equation (2.5) should be the correct equation. However, by the same argument, 
since the spin angular momentum can take half-integral values, the orbital 
angular momentum should also be allowed to assume these values. Irrespective 

1 It should be mentioned here that the same equation was obtained by Inglis (for example, 
see Inglis, 1954) but within a different context. 

2 It may be mentioned that if, in addition to the magnetic field, the electric field is also 
present, then the corresponding wave equation should be (~ = electrostatic potential) 

i h ~ q ~ (  eL eS ) 
~t = H ° + e ¢ - - -  - B - - - . B  mc mc 

Here, of course, terms like the spin-orbit interaction, etc. have not been included, but 
this will be the subject of future communications. 

3 We shall see in Section 3 that equation (2.4) gives the total intrinsic magnetic moment 
correctly including the anomalous part of the magnetic moment. 



A DIFFERENT THEORY OF ANOMALOUS MAGNETIC MOMENT 783 

of the value for orbital angular momentum, the sign of the wave function 
changes as the coordinate system is rotated through an angle of 2~ radians as 
a result of its spin. Therefore, there is no justification for restricting the eigen- 
values of orbital angular momentum only to integral numbers. 

3. The  A n o m a l o u s  Magne t i c  M o m e n t  

Before we go into the investigation of the anomalous magnetic moment, the 
question to be answered is as to the origin of the spin angular momentum. The 
only way that a particle can possess spin angular momentum is if it is actually 
spinning with certain angular velocity. This angular velocity, in analogy with 
Newtonian mechanics, must be proportional and parallel to the spin angular 
momentum. Thus the spin angular velocity operator ~Os should be given by 

e~ s = X e S / m c  (3.1) 

where 3. is a constant. The constant (3.e/mc) -1 may be called the moment of 
inertia of the particle. The justification for the factor e / m  on the right-hand 
side of equation (3.1) comes from the observation that in equation (2.2) the 
angular velocity is proportional to elm.  The energy assocated with the spin of 
the particle must form a part of the observed mass of the particle. This 
energy due to spin is given by the operator 

ms c2 = o~ s • S = 3 .eS2/mc (3.2) 

Consider the case wherein a charged particle enters a region of pure magnetic 
field perpendicular to the direction of its velocity. Then the particle wilt move 
along a circle with angular velocity as Nven by equation (2.2), where m would 
be equal to the observed mass of the particle. If the particle were spinless and 
therefore had no mass due to spin, then in addition to its orbital motion it 
would also rotate about its own body axis with exactly the same angular 
velocity. However, if the particle possesses spin, then the angular velocity of 
rotation about its own body axis would be given by equation (2 .2 )  with m 
standing for the bare mass of the particle, which is the mass of the particle 
excluding the mass due to its spin. From now on let m represent the bare 
mass of the particle and m o its observed mass. Then it should be concluded 
that ~t s and gL should correctly be given by 

pt s = e S / m c  (3.3) 
and 

gL = eL~moO (3.4) 

From the above argument, it is clear that m in equation (3.1) and therefore in 
equation (3.2) represents the bare mass. 

Experimentally it is known that the intrinsic magnetic moment of certain 
particles is given by 

eh(1 + K) 
/xs= 2mo----~ (3.5) 
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where K, a constant, is characteristic of  the particle. Comparing (3.3) with 
(3.5), we get 

K = mo/m - 1 (3.6) 

Now let us consider a few special cases: 
(a) Electron. In the case of  electron, it is known experimentally that 

Ke = 0.00116 and m0 = 0.511 MeV. Substituting these values in (3.6), we get 

mse = moe -- me = 592.074 eV (3.7) 

Thus we see that the mass of  the electron due to its spin is 592.074 eV. Using 
this value for mse, we obtain from equation (3.1) and (3.2) the value for 
o~ s = (e9 s - ojs)1/2 = 16.52 x 1016 rev/sec, which means that the electron is 
spinning about its own body axis with an angular velocity of  16.52 x 1016 
rev/sec. 

(b) Spin-{ Particle o f  Bare Mass Zero. Next let us consider a particle that 
is similar to an electron in every respect except for its bare mass, which we 
take to be vanishingly small. Let us assume that the ratio elm is the same as 
that for an electron, which therefore means that the charge o f  this particle is 
also vanishingly small. Then from equation (3.3) we find that its intrinsic 
magnetic moment is the same as that for an electron, tf  we further assume that 
the value of  k for this particle is also the same as that for the electron, then 
the observed mass o f  such a particle, which obviously is due only to its spin, 
should be the same as the mass of  the electron due to  its spin, i.e., 592.074 eV, 
and it should be spinning about its own body axis with the same angular 
velocity as the electron, i.e., 16.52 x 1016 rev/sec. Perhaps this particle can be 
identified with a neutrino. 

An analysis similar to that for the electron can easily be carried on for 
other "particles." For example, for the muon we get rnsu = 158.249 keV 
and Osu = 44. t5  x 1018- rev/sec, and for the proton we get rnsp = 603.1 MeV 
(assuming that besides its bare mass, the rest of  its mass is all due to spin) 
and cosp = 16.98 x 1022 rev/sec etc. 
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